TRC ELECTRONICS, INC.

1 Watt

- Precision Voltage Regulated
- Output Voltages from 10kV
- 0 to 100\% Programmable Output
- Voltage \& Current Monitors
- On-board Voltage Reference
- Operating Temperature $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
- Temperature Coefficient $<50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Shielded Case with Isolated Case Ground
- 3 Year Warranty

Dimensions:
CB Series: $3.00 \times 1.25 \times 0.60^{\prime \prime}(76.2 \times 31.8 \times 15.2 \mathrm{~mm})$
The CB Series is line of miniature, well-regulated high voltage power supplies providing clean and reliable high voltage in a shielded, PCB mount package. They are programmed from 0 to 100% via a 0 to +5 volt DAC compatible high impedance programming input voltage. A built-in reference voltage source can be used in lieu of the programming voltage.

Current and voltage monitoring outputs are standard on all models. Safety features include built-in protection against programming overvoltage and thermal shutdown. Temperature drift is less than $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The units exhibits very low ripple, noise, and EMI/RFI by utilizing a quasi-sinewave oscillator, shielded transformer, excellent filtering techniques, and an isolated steel enclosure featuring a separate grounding pin. A proprietary encapsulation process and high performance formula are used to achieve excellent high voltage and thermal properties. These component level power supplies are ideal for easy integration into compact, sensitive equipment.

Notes

1. Maximum rated output current is available at maximum rated output voltage.
2. Specifications after 1 hour warm-up, full load, $25^{\circ} \mathrm{C}$ unless otherwise indicated.
3. Proper thermal management techniques are required to maintain safe case temperature.
4. SET POINT ACCURACY refers to the ability of the unit to accurately deliver the programmed voltage.
5. GAIN ADJUST refers to the ability to alter the gain of the circuit to allow for setpoint accuracy error.
6. LINEARITY refers to how much the transfer function can deviate from a straight line in the absence of any set-point error.

DC/HVDC Converter•1W
XP Power CB Series
TRC ELECTRONICS, INC.

| Input |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 12Vin Models
 Characteristic Minimum Typical Maximum
 Input Voltage, Vin 11.5 12.0 16.0
 Units Notes \& Conditions
 Input Current, No Load 100
 VDC
 Input Current, Full Load mA
 Input Capacitance 440 225
 mA
 Programming Voltage, Vpgm 0
 Vpgm, Overvoltage Protection +5 |

General					
Characteristic	Minimum	Typical	Maximum	Units	Notes \& Conditions
Isolation	N/A - Input ground is connected to output ground				
Construction	Case materials is zinc plated steel. UL 94 V-0 rated solid vacuum encapsulation				
Switching Frequency	100		150	kHz	
Mean Time Between Failure	2.6			MHrs	Per Bellcore TR $332 \mathrm{~GB}+25^{\circ} \mathrm{C}$

Environmental
Characteristic Minimum Typical Maximum Units Notes \& Conditions Operating Temperature -10 +60 ${ }^{\circ} \mathrm{C}$ Case temperature Storage Temperature -20 +100 ${ }^{\circ} \mathrm{C}$ Humidity 95 $\% \mathrm{RH}$ Non-condensing Cooling Natural convection Thermal Shock Limit ${ }^{\circ} \mathrm{C} / 10 \mathrm{sec}$ Thermal Shutdown ${ }^{\circ} \mathrm{C}$

Mechanical Details

Notes

1. All dimensions are in inches (mm)
2. Weight: $3 \mathrm{oz}(85 \mathrm{~g})$
3. Tolerance: $\mathrm{X.XX} \pm 0.02$ (0.51)
4. Pin Tolerance: ± 0.005 (0.127)
5. All grounds internally connected except case. Case Ground (Pin 3) must be connected to ground, with no more than 50V between case ground (Pin 3) and circuit ground (Pin 2).

XP Power CB Series
TRC ELECTRONICS, INC.

Block Diagram

Connection Diagram

www.trcelectronics.com

Application Notes

Output Voltage vs. Output Power Derating Curve

Programming Voltage vs Output Voltage

„www.trcelectronics.com

